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Particular solutions of the problem about to be considered have been obtalned
for specific external force fields by Johann Bernoulli {the shape of a sail
in a wind), Popov [1], Krylov {2] and Kochin [3].

The problem in general form has been solved on'y for the case of a planar
force field (Minakov [4]). Minakov obtained his solution by assuming that
the components of the external force were glven along the tangent and normal
to the string, and by applying the natural equations of equilibtium.

What folleows 1s a general solution of the problem in Cartesian coordinates
with the string situated in a plane and in a three-dimensilonal space.

1. Let the external force P’ per unit string length be a function of
the orientation of the string in space, l.e. of the direction cosines of the
string dx/de , dy/ds , dz/de and let 1t be given in terms of its projec-
tions F,, F,s F, on the Carteslan coordinate axes.

The equilibrium equations for a flexible inextensible homogeneous string
in this case take the form

d dx der dy dz
E(T”JE')“{“Fx(E‘E’_dE):o {#, ¥, 2)

dz\2 dy\2 dz)z
(&) + (@) + (&) =1
where g 1s the length of the string, 7 1s the tenslon in the string,and
(¥, ¥» 2) 1is the symbol for the cycile permutation.

Let us multiply out the derivatives on the left-hand sides of the first
three eguatlons of the system, and add to the third equation, multiplied by
dz/bs » the first two equations multiplied by 4x/de and dy/bs, respec-
tively. Taking into account the fourth equation of the system and the rela=-
tion obtained by differentlating the fourth equation with respect to g ,we
reduce tne equilibrium equations to the form
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aT' de &2z der dy dz}
'd‘s“i.z;”mﬂ"%(‘a;' T @) =0
dl dy dty

de dy dz\
"zz‘;‘&‘;"”"g;f%“f‘y(‘&?*‘a;ﬁ;)-" (1.9
a7 | dz de dy dz dy dx dy Eg_) dz! (fiﬁ_ dy ii)___
'&?"‘7;'&(75%3’@)*75 u('a’;’a’ds F g vas ' ds) =0

Z
ds
dz \2 dy \2 dz )2
(&) + (&) + (&) =1
Without any significant loss of generality, we may assume that the string

nowhere forms a right le with one of the coordinate axes, e.g. the x-axis,
This guarantees that gx/des # O .

We now introduce the new variables u eand v , so that, taking into
account the fourth equation in system (1.1), we have

dz d; dz —
T —ggzuv, -d—;=}fi—-u’-—a’v‘ {1.2}
This substitution of variables allows us to express the projections of
the external force on the coordinate axes as functions of y and » . The
first three equations of system (1.1) become
dr du
e T g+ P (u, ) =0 (1.3)
dr du dv
Wuv-!—i"(-;’,; v uEs')+Fv(“’ v) =0 {1.4)
% = —uF,(u, v) — uvFy (4, 2) — V1w —uw?F, (4, v) {1.5)

Multiplying Equation (1.3) by » and subtracting the result from Equation
{1.4) we obtain

dv v i
T}}—;= -;—Fx(u, v} — —u-*Fy(u, v) (1.6)
On the other hand, from Equation (1.3}, recalling (1.5), we find that

7 I 2 )y, )+ woFy (0, 0) + VTR WP Ay 0) (D)

We divide Equation (1.6) by {1.7). This gives us an ordinary first-order
differential equation sclved for the first derlvative that relates the vari-
ables y and v

do - vF, (u, ) — F, {u, v)
du u(@ut —1)F, (u, v)+ u“va (u, v) +u2 Y 1 —ud —u®o?F, (4, v)

Once the function uv{u) has been determined by approximate integration
of the above equation, finding the five functions x{u}, ylu), #{u); elul;
7{u) that constitute the complete parametric solution of the problem becomes
a matter of quadratures, Indeed, divliding Equation {1.5) by (1.7), we obtain
an equation with separable variables, whose integration yields the following
expression for the tension in the string:

uF, {u, v} + uvkF, (u, &)+ V1= — 2% (1, v)

(A —u’)F (u, ) — o F, (4,2} —u V11—~ u®2F, (u, v)

du

T{u = ClexpS

Next, integrating Equation (1.7), we have
T (u) du

e C.
s =S @ D) F (a0 9) F wtoFy (w,0) +u ¥V 1— @@ — wioF, (u, 1) o
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Finally, by integrating Equations (1.2) we obtain the present coordinates
of the string as functions of y :

() = S wds (u) + C,, y(w) = S uvds (u) - C,
5 (u) = S VI— o —utotds(u) 4 C,

The constants ¢,, C,, C;, C, Cs can be determined from the given ini-
tial conditions.

2, When the string 1s situated in a plane, the equilibrium equations for
a flexible, inextensible, homogeneous string become

d dz dz dy d dy dz dy
(T IR A %)=0 E?(TK)'H’v(Es—'E):O

(%)3-% (%)2 =1 2.1)

We will attempt to find the tension and equilibrium shape of the string
in parametric form, 1.e. in the form of four functions of the direction
cosine dx/ds

2,48 7T| (dz/ds)

We introduce the appropriate notation. Taking lnto account the third
equation of (2.1), we have

dz dy -
— Jat- S —ul
P s =V1i—u (2.2)
This substitution allows us to express F, and F, as functions of the
single variable vy .

We multiply out the derivatives on the left-hand sides of the equilibrium
equatlons and add the first equation multiplied by dx/be to the second
equation multiplied by dy/&e . Recalling the third equation of system
(2.1) and the relation

dz d’z +_dy d?y
o =
we obtain ds dst ds ds

aT o
oy = . —VI—WF, () 2.3
We note taat

Pz dy _ Py de  d ds | dy

ds? ds ds® ds ds ds ds

Next, we multiply the second equation of system (2.1) by dx/de and
subtract from 1t the first equation of the system multiplied by dy/ds
Takling into account the latter expression as well, we obtain

T du
Vi @5 = 4 —VT—wF () 2.4)

We divide Equation (2.3) by (2.4)

Vi—u dr  uF (W) + VI—uF, (u)
T du YT wiF, () —uF, (v)

Integration of this expression gives us the tension in the string

uF, (u) + V1= u’Fu (u)
A—u) F () —uyY 1T u’Fv(u) du

T(u= C,°expS
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We now integrate Equation (2.4) to find

T (u) du n
wy1— wlF, (u) + (u — 1) F, (u)

s(u) = S Cy°

Let us now find the present ooordinates of the stri as functlons of the
direction cosine. We proceed by integrating Equations {2.2) and making use
of the latter expression. This glves us

_ uT (u) du o
= _Su'Vi— PF, (u) + (w? — 1) F (u) 0
. T (u) du o
y () “Supy(u)-—lfi— WF, (u) G

The constants (,°, C;°, Cs°, C,°, may be determined from the initial
conditions.

Thus, the tenslon and equilibrium shape of the string are found in quad-
ratures.

3. Let us consider the case where the string is acted upon by a homoge-
neous force fleld (e.g. a gravitational field) in addition to the external
forces that depend on the orlentation of the string.

In constructing the equilibrium equations for the flexlible string, we
choose a coordinate system such that the directlon of one of its axes, e.g.
the y-axls, coincides with the direction of the homogeneous fleld vector.
Now, 1n order to extend the solutlons of Sections 1 and 2 to the case in
hand, 1t is sufficlent to replace F, by F,+g¢ 1n the final formulas of
these solutions (q = const 1s the aﬁsolute value of the homogeneous field
force per unit string length).
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